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Outline

� Overview of calibration, with motivating examples.

� Simple linear calibration: frequentist controversy, Hoadley's

Bayesian resolution revisited.

� Multiple-use calibration: curious features illustrated by an

example.

� Noninformative priors in polynomial calibration problems
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Calibration Problems

� In a typical calibration problem, there are two ways of measuring

something.

{ For a \training" dataset, we use both measurements on each

object.

{ For future data, we only perform one of the methods, and we use

this value, a model, and the training data to make inference on

the other measurement method.

� Typically one of the measurement methods is more accurate, but

also more expensive, time consuming, etc.

� Sometimes one of the measurements can only be made for the

training data because of the use of standard objects, for which the

\truth" is known by design.

� Calibration can often be thought of as inverse regression.
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Types of Calibration Problems

� Simple linear (y = �+ �x+ �), linear (y = X� + �), nonlinear

(y = f(x1; : : : ; xp;�) + �).

� Univariate or multivariate

� random (training xs from population) or controlled (training xs

known).

� Single-use or multiple-use
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Calibration of Body Fat Measurements

(Branco, et al. (2000), JSPI, 90, p. 83)
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Estimating Gestational Age from Ultrasound Fetal

Measurements
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Fetal Measurements vs. Age: Projections of a Curve in R3

Age vs. Ultrasound Measurements
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Multivariate Calibration; Wavelength Selection:

Estimating Temperature from Polymer Fluorescence Spectra
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Developing ELISA Assay for DNase

(Davidian and Glitinan, 1995, p. 134)
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Univariate Single-Use Calibration:

A Frequentist Controversy With a Bayesian Resolution

� Classical Calibration: Eisenhart (1939)

� Inverse Calibration: Krutchko� (1967)

� Bayesian Interpretation: Hoadley (1970)
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The Simple Linear Regression Calibration Problem

� Training Data:

yi = �+ �xi + �i;

for i = 1; : : : ; n, with � � N(0; �2). The fyig are typically easy

and cheap to obtain; the fxig are more expensive but more

accurate.

� Future observations:

yi = �+ �� + �i;

i = n+ 1; : : : ; n+m.

� How should one estimate �, and assess the uncertainty in the

estimate?
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\Classical" Calibration

Eisenhart (1939)

� Estimate �̂, �̂, �̂ by least squares, then let

�̂ =
�y2 � �̂

�̂
;

where �y2 is the mean of fyig
m+n
i=n+1.

� A con�dence interval is obtained by solving a quadratic

equation for the values of � which satisfy

j�y2 � �̂� �̂�j

c(�)�̂
� tn�2(
);

where c(�) is the square root of the usual quadratic form for

prediction intervals in simple linear regression.
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The Classical Calibration Estimator Does not Have

Positive Moments

� The estimator �̂ has no positive moments.

� This follows from the fact that �̂ has a minimum greater than

zero on any interval containing the origin.

� In practice, if �̂ is many standard deviations from zero, this

may not be very important.

� In a sense, one might regard this in�nite expectation as arising

from a breakdown of the normal model, which one doesn't

really expect to hold far into the tails.
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Con�dence Regions based on the Classical Estimator are

not Always Intervals

� When the \signal-to-noise" ratio �=� is small, a con�dence

region can be empty, the union of two rays, or the whole line.

� This is because one obtains this con�dence region by solving a

quadratic equation, and a parabola can intersect the � axis in

various ways.

� The estimator �̂ is inadmissible (Kubokawa and Robert, 1994).
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Inverse Calibration

Krutchko� (1967)

� Training data:

xi = ��0 + ��1yi + �i;

for i = 1; : : : ; n,

� Future observation:

� = ��0 + ��1yi + �i;

� Calibration estimate:

�� = �̂�0 + �̂�1 �y2:

Use prediction interval for uncertainty on ��.
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Comments on the \Inverse" Estimator

� \Justi�ed" on basis of MSE comparison with classical

estimator, which doesn't make much sense (noted by Williams,

1967).

\Although a mathematical proof is not given, the Monte

Carlo results are such that one can safely conclude that the

Inverse approach to the calibration problem has a uniformly

smaller MSE than the Classical approach" (!) [Krutchko�]

� Inconsistent (Berkson, 1969).

� Bayesian justi�cation with t-prior on � (Hoadley, 1970).

� Admissible (Kubokawa and Robert, 1994).
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Controversy

� Krutchko� (1967) claimed that the inverse estimator had

uniformly smaller MSE and so should be preferred.

� Obviously his claim was 
awed because �̂ has in�nite variance.

(It also has in�nite mean, but this was overlooked for some

reason in the early literature.)

� But �� seemed to work well in simulations. It was easier to use,

and didn't have the peculiar con�dence interval properties of �̂.
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The Posterior Predictive Distribution in

Bayesian Calibration

The following derivation is for controlled calibration. (A similar

result can be shown for the random calibration case.)

p(�; �; �jX1; Y1; Y2) /

p(Y1; Y2jX1; �; �; �) � p(�; �; �) =

p(Y2jY1; X1; �; �; �) � p(Y1jX1; �; �; �) � p(�; �) � p(�) /

p(Y2jY1; X1; �; �; �) � p(�; �jY1; X1) � p(�)
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Notation for a Univariate Calibration Model

Y1 = X� + �1

Y2 = Z� + �2

�1 � N(0; �2In)

�2 � N(0; �2Im)

Zm�p = Jn�
T

� =
h
1 �1(�) � � � �p�1(�)

iT
� The matrix Xn�p is known, of full rank (for convenience), with

a column, Jn, of ones. The functions �j(�) are known, and

most likely monotone.
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Hoadley's Results

� Hoadley (JASA, 1970) was apparently the �rst to look at the

simple linear regression calibration problem from a Bayesian

perspective.

� He showed that

p(�jY1; Y2) /
p(�)

s�(�)
t�

"
�y2 � �̂0 � �̂1�

s�(�)

#

� Where

�(�) =

r
1

m
+ �T (XTX)�1�

� =
h
1 �

i
s2 = (SSR + SSy2)=�

� = n+m� 3
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Bayesian Interpretation of the Inverse Estimator

� Hoadley (1970) notes that (for centered and scaled x), if

p(�) = tn�p�1

�
�; 0;

n+ 1

n� 3

�

� Then

p(�jY1; y2) / tn�2(�; 0; 1)
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Priors on �

� Hoadley noted that simple linear regression calibration with

the usual improper noninformative prior on � leads to an

improper posterior.

� This seems to be the Bayesian counterpart to the lack of

positive moments of the Classical estimator.

� Also in common with the Classical frequentist approach, the

improper posterior is not likely to cause problems unless the

training data are very noisy.

� If we integrate numerically, then we'll probably use a �nite

support for �, anyway.

� If we use simulation, then the improper posterior might arise

from humongous values which occur very rarely.

22

Priors on � (Cont'd)

� Note that, if we consider a regression model in �, then Je�rey's

prior on � will lead to a proper posterior if the degree of the

polynomial is greater than one.

� But if the polynomial is of second or higher degree, than

Je�rey's prior on � will almost always lead to a multimodal

posterior. We'll see an example of this later.

� A reference prior for the simple linear regression calibration

problem is available, and it will always lead to a proper

posterior.
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Kubokawa and Robert

(J. Multivariate Analysis, 1994)

Yi = �+

2
6664

�1
...

�d

3
7775xi + �i;

�i � N d(0; �
2I)

�̂ � N d

�
�;

�2

sxx

�

� Note that � and xi are scalars, i = 1; : : : ; n.

� When d = 1, we have simple liner regression. I'm not sure if

d > 1 is of much use in applications.
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Kubokawa and Robert:

Reference Prior

� For calibration with this model (in particular, for simple linear

regression calibration), the Je�rey's prior on � leads to an

improper posterior.

� The authors derive the reference prior for this problem, for

which the posterior is proper. When d = 1, this prior is, in our

notation,

p(�; �; �2) /
�

(�2)3=2
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First Numerical Experiment:

Bodyfat Example; Single Use

� Leave each yi out of the training set in turn, determine the

posterior of the corresponding �i, and compare with the

omitted xi.

� Calculate 95% credible intervals in this way for each xi, and

compare with Classical and Inverse estimates.

� Result: For controlled calibration the intervals agree with

the Classical approach; for random calibration, the intervals

agree with the Inverse approach.
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\Leave-One-Out" Example (Controlled Calibration):

Broken Lines Indicate Classical Intervals
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\Leave-One-Out" Example (Random Calibration): Broken

Lines Indicate Inverse Intervals
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Kernel Density and Hoadley Prior Nearly Identical
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Frequentist Multiple-Use Calibration

Sech��e (Annals, vol 1., p. 1, 1973)

� Most calibration curves are used more than once; often many

times.

� The standard frequentist approach to multiple-use intervals is

due to Sche��e (1973).

� This approach introduces a second probability, with con�dence

statements which are (approximately) of the form \for 
1% of

all training data sets, for 
2% of all future ys, the

corresponding \true" � will be in the calibration interval"

� The precise con�dence statement appropriate for Sche��e's

interval is diÆcult to state concisely; usually the above

approximation is used instead.
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Bayesian Multiple-Use Calibration

� Assume that, having observed post-training y�j s, y
�

1 ; : : : ; y
�

m, we

want to determine the joint posterior of the corresponding �js.

� We can determine the conditional distribution of any �i, given

all the other �js, from the posterior predictive of y�i , regarded

as a function of ��i , and treating the points (�j ; y
�

j ), j 6= i, as

\data".

� This requires an easy one-dimensional integration.

� From these full conditionals, we can then determine the joint

posterior of f�jg
m
j=1 using Gibbs sampling.

� (Alternatively, of course, we can use Gibbs [and Bugs] to do

the whole job.)
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Some Characteristics of This Bayesian Approach

� The calibration results, posteriors of �1; : : : ; �m, are not

dependent; observing a new y�m+1 changes all earlier calibration

inferences.

� The posteriors model parameters (�; �) also change with each

new y�.

� At least for controlled calibration, the posterior of � can

change substantially. This is at �rst counter-intuitive, since we

observe no xs after the training data!
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Second Numerical Experiment:

Bodyfat Data; Multiple-Use

� Use the data on the �rst 18 girls as training data, and girls

19-24 for calibration.

� Look at the joint posterior of � for cases 19-24, for both

controlled and random calibration.

� Take one of the \calibrated" girls (#19), and see how the

posterior for � changes depending on what other calibrations

have been performed.

� Result: The posterior of � can change considerably in

repeated use controlled calibration. This is apparently because

some of the training data becomes less relevant if it is not in

the range of the multiple yj�s.
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Bodyfat Data, Controlled Calibration
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Bodyfat Data, Random Calibration
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Posterior Correlations of �is

Bodyfat Data, Random Calibration
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Posterior Correlations of �is

Bodyfat Data, Random Calibration
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Calibration Data Provides Information on �
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Third Example: Gestational Age

� This example is mostly redundant; I include it here to show

how even when the usual noninformative prior on � leads to a

proper posterior, it may not be of use because this posterior

might not make sense.

� Multimodal posteriors for � will typically arise from polynomial

models of degree > 1 because f�1(y) will usually not be unique!
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A Quadratic Bayesian Calibration
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Use a Proper p(�) When f�1(y) can Have Multiple Values
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Summary of Main Results

� A Bayesian perspective sheds much light on the

Classical/Inverse calibration controversy.

{ The Inverse estimator has a Bayesian interpretation, and is

preferable when future �s will lie within range of training

data.

{ The Inverse estimator is also better from a Bayesian point

of view in the random calibration case.

� A Bayesian approach shows particular promise in the

multiple-use setting. One interesting new feature which arises

is that the posterior can \reweight" the training data after

several post-training ys have been observed.
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